We seek to design experimentally feasible broadband, temporally multiplexed optical quantum memory with near-term applications to telecom bands. Specifically, we devise dispersion compensation (DC) for an impedance-matched narrow-band quantum memory by exploiting Raman processes over two three-level atomic subensembles, one for memory and the other for DC. DC provides impedance matching over more than a full cavity linewidth. Combined with 1 s spin-coherence lifetime the memory could be capable of power efficiency exceeding 90% leading to 106 modes for temporal multiplexing. Our design could lead to significant multiplexing enhancement for quantum repeaters to be used for telecom quantum networks.