The Physics-Uspekhi’s competition “The best articles and reviews 2015”

Congratulations to the prof. A. M. Zheltikov and his colleagues I. V. Fedotov, A. B. Fedotov  from  the laboratory of Photonics and quantum technologies on winning “The best review 2015” award by Physics-Uspekhi journal for the work

Neurophotonics: optical methods to study and control the brain

, , ,

Abstract. Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary direction of natural sciences — neurophotonics, leading to the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, as well as molecular engineering of brain cells aimed at a diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers suggest unique approaches helping to confront the most challenging problems in brain research, including the analysis of cellular and molecular mechanisms behind memory and cognition. Optical fibers of new generation offer new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering — fiber-optic neuroendoscopes and neurointerfaces. These instruments open new horizons for the investigation of the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely behaving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely behaving mammals. Here, we offer a brief review of this rapidly growing field of research.

We wish the authors future success and hope to see more of their work in future!

Optical microfiber using HF etching

Thanks to the efforts of Anatoly Mikhalovich Shegeda the narrowing down of optical fiber down to 1.7 um has been achieved. The narrowing down is achieved due to the hydrofluoric acid etching. We are glad to share the photos with you.

Unaltered fiber approximately 120 um in diameter

Narrow part of the fiber, 1.7um width

Laboratory of photonics and nonlinear fiber optics wins a megagrant of Ministry of education and science of RF

Laboratory of photonics and nonlinear fiber optics in collaboration with Alexey Mikhailovich Zheltikov has won a megagrant of Ministry of education and science of Russian Federation with their project “Lightgiude systems for quantum technologies”. There are only two Kazan laboratories among the winners, the second one being a chemistry lab of Kazan federal university.

Any russian  college or academy in collaboration with the scientist leading in his field of science could compete for the grant. The fields of science were: natural sciences, technics and technology, medical sciences and sciences of of health, agricultural sciences, social sciences, humanities.

The winners were chosen on the exit session of Soviet for grants which took place during the Second International scientific conference “Science of the future” and Second All-Russian forum “The science of the future – The science of the young” (Kazan). Altogether 542 applications from leading sciences from 45  countries in collaboration with almost 300 scientific and educational institutes of Russia.

Grants of Russian government are given out in the amount not greater than 90 million rubles each for scientific research for 3 years with the ability of extension for another two years.

Summer school-seminar “Science and innovation”

From 5th to 9th of July “Volga StateUniversity of Technology (Mari State Technical University)” held an XI International scientific school-seminar “Fundamental research and innovation: nanooptics, photonics and coherent spectroscopy”. The conference was held on a picturesque coast of the lake “Yalchik” and gathered around 90 participants from all over the Russia including 40 young researchers and PhD students.

At the conference Kazan quantum center was presented by a series of talks on resent research of the center:

  • S. O. Tarasov, S. A. Moiseev // Optical quantum memory on spin states of quantum dots
  • R. V. Urmancheev, K. I. Gerasimov, M. M. Minnegaliev and S. A. Moiseev // Photon echo area theorem for optically dense media
  • М.М. Minnegaliev, E. I. Baybekov , K. I. Gerasimov, B. Z. Malkin, S. A. Moiseev, R. V. Urmancheev // Kinetics of  166Er3+ и 167Er3+ ion transitions in 7LiYF4 crystals and perspectives of using it for quantum memory
  • N.M.Arslanov, A.A.Kamli, S.A. Moiseev // Highly confined low loss light waves in nanoscale optical waveguides
  • N. M. Arslanov, O. I. Bannik, L. R. Gilyazov, V. I. Egorov, V. V. Chistyakov, A. V. Gleym, S. A. Moiseev //  Development of quantum network for quantum key distribution using sidebands in Kazan

All the talks given at the conference will be published in the digest. Further details can be found on the site of the conference (in russian).

Scientists of KQC will create the first quantum network in Russia

The first quantum network in Russia will be created by the scientists of KNRTU-KAI and ITMO in Kazan in the domain of network provider “Tattelecom”.

Scientists from Kazan Quantum Center KNRTU-KAI and ITMO university have launched a trial segment of the multinodular quantum network, that is the first such network in the country. This is to be a big step in the development of quantum communications in Russia and will provide the technological basis for the following creation of scalable quantum communication infrastructure.

The article on inzvestia.ru (Russian)

New research by E. S. Moiseev & and S. A. Moiseev

Time-bin quantum RAM

Abstract: We have proposed a compact scheme of quantum random access memory (qRAM) based on the impedancematched multi-qubit photon echo quantum memory incorporated with the control four-level atom in two coupled QED cavities. A set of matching conditions for basic physical parameters of the qRAM scheme that provides an efficient quantum control of the fast single photon storage and readout has been found. In particular, it has been discovered that the efficient qRAM operations are determined by the specific properties of the excited photonic molecule coupling the two QED cavities. Herein, the maximal efficiency of the qRAM is realized when the cooperativity parameter of the photonic molecule equals to unity that can be experimentally achievable. We have also elaborated upon the new quantum address scheme where the multi-time-bin photon state is used for the control of the four-level atom during the readout of the photonic qubits from the quantum memory. The scheme reduces the required number of logical elements to one. Experimental implementation by means of current quantum technologies in the optical and microwave domains
is also discussed.

View at publisher’s website

Authors from Taiwan report 96% efficiency quantum memory

An intriguing manuscript concerning experimental implementation of quantum memory has recently appeared at arxiv.org. The manuscript is titled “EIT-based photonic memory with near-unity storage efficiency” therein group of ten authors claim that they have achieved 96% storage efficiency in cold Cs vapor using EIT protocol. If the results are correct that is a new record in quantum storage and overall an outstanding experimental result!

96percent_setup

Guest talk by Vashurin N. S.

Tomorrow at 12:00 in the conference hall Vashurin N. S. from Volga State Technical University will present his PhD thesis titled

“Femtosecond photon echo via exciton states  in think textured films”

Full length text of the authors PhD thesis could be found in a Lobachevsky Nicolay Scientific Library

President of Tatarstan republic in kazan quantum center

President of Tatarstan republic in kazan quantum center

Rustam Minnikhanov, the president of the Tatarstan republic has visited Kazan Quantum Center, as part of the open meeting for young innovators, inventors and rationalizers of Russia. Sergey Moiseev has shown him around the laboratories and told him about recent activities, successes and future plans of the center.

Президент республики Татарстан, Рустам Минниханов в лаборатории квантовой криптографии.

President Minnikhanov in the Quantum Cryptography lab.

Р. Минниханов в лаборатории квантовой криптографии

R. Minnikhanov in QC lab.

“Applied electrodynamics, photonics and living systems-2016”

This Friday in KQC as part of the international youth science and technology conference “Applied electrodynamics, photonics and living systems-2016” there will be held an affiliated meeting titled “Quantum optics and communications“. The session will take place at 10:00 in the conference hall of the center and will feature presenters from several Kazan universities as well as KQC employees.

Each presentation is to be less than 10 minutes long with 5 additional minutes for questions.

Page 1 of 212»
-->